A viscosity solution approach to the asymptotic analysis of queueing systems
نویسندگان
چکیده
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.
منابع مشابه
Emergency Location Problems with an M/G/k Queueing System
Since late 1960's, the emergency location problems, fire stations and medical emergency services have attracted the attention of researchers. Mathematical models, both deterministic and probabilistic, have been proposed and applied to find suitable locations for such facilities in many urban and rural areas. Here, we review some models proposed for finding the location of such facilities, wit...
متن کاملAsymptotic Analysis of Binary Gas Mixture Separation by Nanometric Tubular Ceramic Membranes: Cocurrent and Countercurrent Flow Patterns
Analytical gas-permeation models for predicting the separation process across membranes (exit compositions and area requirement) constitutes an important and necessary step in understanding the overall performance of membrane modules. But, the exact (numerical) solution methods suffer from the complexity of the solution. Therefore, solutions of nonlinear ordinary differential equations th...
متن کاملPartial-Fraction Decomposition Approach to the M/H2/2 Queue
Here, a two server queueing system with Poisson arrivals and two different types of customers (M/H2/2 queue) is analyzed. A novel straightforward method is presented to acquire the exact and explicit forms of the performance measures. First, the steady state equations along with their Z-transforms are derived for the aforementioned queueing system. Using some limiting behaviors of the steady-st...
متن کاملExtension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems
The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...
متن کاملNon-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کامل